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Laboratory experiments were conducted to study the interaction between two
downward propagating internal wave rays with identical properties but opposite
horizontal phase velocities. The intersection of the rays produced a velocity field with
stagnation points, and these points propagated vertically upwards within the
intersection region. Nonlinear non-resonant interactions between the two rays
produced evanescent modes, with frequencies greater than the ambient buoyancy
frequency, trapped within the intersection region. These evanescent modes provided a
mechanism whereby energy could accumulate locally and, even though the vertical
wavelength of the primary resultant wave remained the same, the local isopycnal
displacements increased in time. Eventually, the isopycnals were forced to overturn in
the region just above the stagnation points by the variation with depth in the local
horizontal strain rate.

The gravitationally unstable overturning ultimately broke down releasing its
available potential energy and generating turbulence within the intersection region.
The results showed that the release of available potential energy was disrupted by the
wave motions and even the dissipative scales were directly affected by the ambient
stratification and the background wave motion. The distribution of the centred
displacement scales was highly skewed towards the Kolmogorov scale and the
turbulent Reynolds number Re

t
was low. Thus, the net buoyancy flux was very small

and almost all turbulent kinetic energy was dissipated over the parameter range
investigated. The results also showed that for such dissipative events the square of the
strain Froude number (ε}νN#

!
) and the turbulent Reynolds number Re

t
can be less than

one.

1. Introduction

In a stratified lake or ocean, basin scale motions can produce smaller scale internal
waves (e.g. Thorpe 1975; Imberger 1994) which distribute momentum and energy
throughout the water body (e.g. Mu$ ller & Henderson 1991). This wave field, in turn,
is an energy source sustaining turbulence and small-scale mixing in the interior of the
water body (e.g. Gregg 1987; Ivey & Imberger 1991, hereinafter referred to as II). In
this way, internal waves link the energy-containing scales to the dissipative scales (e.g.
Munk 1981; Mu$ ller, D’Asaro & Holloway 1991; Imberger 1994) and quantifying the
internal wave dynamics is thus of great importance in the fields of physical limnology
and oceanography.

The properties of internal waves have been well documented (e.g. Phillips 1977) and
their propagation in a linearly stratified water has been clearly visualized in schlieren
pictures by Mowbray & Rarity (1967). As the waves propagate in a stratified fluid, they
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can be trapped either between two turning points within a thermocline (e.g. LeBlond
& Mysak 1978; Garrett & Munk 1979; Javam, Imberger & Armfield 1997a) or by a
spatially periodic current (Phillips 1968). Alternatively, they can be absorbed at a
critical level (e.g. Thorpe 1981; Winters & Riley 1992; Lin et al. 1993a ; Javam et al.
1997a). Further, they can break on a sloping bottom, generating either localized
unstable density structures near the slope (Thorpe 1987a), turbulence in the vicinity of
the bottom (Ivey, DeSilva & Imberger 1995), or drive boundary mixing (e.g. Ivey &
Nokes 1989, hereinafter referred to as IN; Taylor 1993). Besides these effects, at the
depth where two downward propagating internal wave rays intersect, nonlinear non-
resonant interactions between the two rays can generate instability and ‘traumata’
(McEwan 1973; Javam et al. 1995b).

The effect of resonant interactions on internal waves has received some attention in
the literature (e.g. Thorpe 1966, 1987a ; Martin, Simmons & Wunsch 1969, 1972;
Phillips 1977; Lin et al. 1996) as nonlinear resonant interactions provide a mechanism
to transfer wave energy across the frequency (and wavenumber) spectrum. Resonant
interactions may also cause the amplitude of parasitic waves to grow once the
amplitude of host waves exceeds a critical value (McEwan 1971). Eventually, an
instability occurs and the ambient stratified water is mixed (e.g. McEwan 1971,
1983a, b ; Taylor 1992). In contrast, nonlinear non-resonant interactions have received
relatively little attention (e.g. McEwan 1973; McEwan & Plum 1977; Thorpe 1987a),
even though they also transfer wave energy across the spectrum and the criterion for
their occurrence is less restrictive (Phillips 1977).

Suppose two plane internal waves are interacting nonlinearly, and each of them is
governed by the dispersion relation (e.g. Phillips 1977)
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and the third wave is also governed by the dispersion relation (1), then a triad resonant
interaction is formed (e.g. Thorpe 1966; McComas & Bretherton 1977; Phillips 1977;
Lin et al. 1993) and wave energy is transferred towards frequencies lower than the
forcing frequency (e.g. Martin et al. 1969, 1972; McEwan 1971; McEwan & Robinson
1975). Any resonant triad consisting of a finite-amplitude wave and two infinitesimal
components is unstable for the sum interaction and neutrally stable for the difference
interaction (Hasselmann 1967; McEwan 1971). Note that each of the three waves
participating in a resonant triad is an exact solution of the equation of motion (with
the inviscid and Boussinesq assumptions).

On the other hand, if the third wave fails to satisfy the resonant conditions
(equations (1) and (2)), it becomes a forced oscillation sustained by the nonlinear terms
in the equation of motion. In this case, nonlinear non-resonant interactions are
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responsible for transferring energy to the third wave if the two original waves have
some finite amplitude (e.g. McEwan 1973). Since each of the two original waves is an
exact solution of the equation of motion, their amplitudes are theoretically
unconstrained (neglecting the possibility of hydrodynamic instability). Therefore, this
finite-amplitude criterion is, in general, less stringent than the resonant conditions
(Phillips 1977).

For the case of two internal waves having the same frequency passing through each
other in a linearly stratified fluid, Phillips (1968) has concluded from a theoretical study
that the waves do not interact. The experiments described below show, however, they
can in fact interact, leading to the production of modes which have frequencies greater
than the ambient buoyancy frequency and ultimately the generation of gravitationally
unstable overturning.

While nonlinear interactions distribute wave energy across the frequency (and
wavenumber) spectrum, instabilities initiate the transition to turbulence, leading to an
energy cascade to even smaller scales. Recent work (Taylor 1992; Winters & Riley
1992; Lombard & Riley 1996) has shown that a rich variety of instabilities can
simultaneously occur in an internal wave field preceding the occurrence of turbulence.
These instabilities can include both shear instability (e.g. Turner 1973; Thorpe 1987b ;
Lawrence, Browand & Redekopp 1991) and gravitational instability (e.g. Orlanski &
Bryan 1969; Delisi & Orlanski 1975; McEwan 1983a ; Thorpe 1994a, b). For the case
of gravitational instability, the mechanism leading to the transition from the wave
motion to localized unstable density structure, followed by turbulence, is often
ambiguous (Thorpe 1994b).

The instantaneous turbulent kinetic energy (TKE) dissipation rate ε can be
normalized by viscosity ν and N#

!
. Recently, ε}νN#

!
has been discussed widely in the

literature (e.g. Stillinger, Helland & Van Atta 1983; Gargett 1988; Yamazaki 1990;
Phillips 1991; Imberger 1994). In stratified turbulence, the scales at which energy is fed
into turbulence are often assumed to be of the order of either the Ozmidov scale
L

!
¯ (ε}N$

!
)"/# or the overturning scale derived from density measurements (e.g.

Thorpe 1977; Gargett, Osborn & Nasmyth 1984; Hopfinger 1987; Luketina & Imberger
1989; Gibson 1991; Taylor 1992). With the former assumption, ε}νN#

!
indicates

the separation between the energy-containing scales and the Kolmogorov scale
L
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is the smallest lengthscale for turbulent velocity
fluctuations? With the latter assumption, II defined the turbulent Reynolds number
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c
is the root mean square centred displacement scale. Again,

Re
t
is a measure of the separation in scales. Hence, does Re

t
have the same lower

limit? The present laboratory experiments have attempted to address some of the
questions raised above by investigating the consequences of nonlinear non-resonant
interactions between two downward propagating internal wave rays having identical
properties but opposite horizontal phase velocities.

2. Laboratory experiments

The experiments were performed in a glass tank 5900 mm long, 535 mm wide and
540 mm deep (figure 1). At each end of the tank, sloping bottoms at an angle of 20°
to the horizontal floor were installed as wave absorbers. Internal waves with
frequencies exceeding the critical frequency of 0.34 N

!
would thus forward reflect off

the slopes towards the apexes where they were dissipated (e.g. Turner 1973; Cacchione
& Wunsch 1974), leaving the working section free from end-wall reflections. The tank
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Internal wave rays

Continuously stratified water

Experiment tank

Wave paddles

F 1. Schematic of the experiment tank (elevation view). Support and eccentric crank-driving
arm mechanisms for wave paddles are not shown.

Cp1

Cg1

Cp2

Cg2

F 2. Schematic of the two rays generated by the two paddles. Solid lines are the maxima wave-
induced density fluctuations (wave crests) ; dashed lines are the minima wave induced density
fluctuations. C

p"
and C

p#
are phase velocities, and C

g"
and C

g#
are the group velocities.

was filled with a linearly stratified salt water by using the two-tank technique (Fortuin
1960).

Two identical wave-paddles, driven by a d.c.-motor, were located horizontally near
the centre of the tank at 40 mm below the free surface to generate two internal wave
rays (McEwan 1973; Teoh 1995). These paddles were separated, centre to centre, by
615 mm and each consisted of eight blades which could pivot independently about
their long central axes (figure 1). During the experiments, only the central six blades
were oscillated, thus forming either an M or W shape with a total width of 286 mm,
and the two emitted waves had a width of 1.5 times the wavelength. The central
amplitude of each paddle was 20 mm, while the amplitudes at both sides of the paddles
were set at half the central amplitude in order to minimize the net volume flux induced
by blade displacements.

The intersection between the two rays was visualized by bull eye’s rainbow schlieren
and shadowgraph techniques (Merzkirch 1974), in conjunction with velocity
measurements made by particle image velocimetry. A 23 mm diameter bull’s eye
rainbow filter consisting of concentric annuli of rainbow colours, with the colour blue
at the core, was used in the set up for the rainbow schlieren technique (Howes 1984;
IN). Particle image velocimetry was carried out by injecting Pliolite particles of less
than 75 µm into the flow field. These suspended particles were illuminated with a 5 mm
thick vertical light sheet, created from a 1000 W white theatre lamp. Particle images
were recorded at 25 frames per s with a black and white CCD camera and a Super-VHS
video recorder. Pairs of particle images, each integrated over two consecutive frames,
were digitized at 5 frame intervals apart using an image acquisition system. To derive
two-dimensional velocity fields, each pair of images was analysed by the maximized
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cross-correlation (MCC) technique described by Stevens & Coates (1994), employing
a window of 45¬45 pixels (8.8 mm horizontally¬8.6 mm vertically). The vertical
shear was then computed from the velocity fields by using a three-point centre
differencing scheme, and a Butterworth filter was used to eliminate fluctuations with
wavelength smaller than 8.6 mm.

Vertical density profiles and time series measurements were obtained with a
combination of a Precision Measurement Engineering (PME) siphoning conductivity
probe (SCP), a four-electrode fast response micro-conductivity probe (FRC) (Head
1983) and a fast response thermistor of nominal resistance 100 kΩ (FP07). Since the SCP
drifted less than 0.2% over 10 h, the FRC conductivity was calibrated in situ against
the SCP conductivity thereby compensating for any drift in the FRC. The response
time for the FRC and FP07 were, respectively, 4 ms and 12 ms. The roll-off for the
FP07 was digitally corrected to 4 ms using the methods described in detail by Fozdar,
Parker & Imberger (1985). Profiling was done at a vertical traverse speed of 100 mm s−"

and the direct and differentiated output from each sensor was collected at 100 Hz
through a 16-bit analog-digital converter.

3. Flow visualization

3.1. Rainbow colour schlieren pictures

A schematic of the two rays generated by the paddles is shown in figure 2. Within the
rays, the wave crests (defined as the maximum ρh ) propagate obliquely upwards at the
phase velocity ; on the other hand, the energy propagates obliquely downwards at the
group velocity (e.g. Phillips 1977). Note that the two rays have identical horizontal and
vertical wavelengths.

Figure 3 shows a sequence of schlieren images in the region of intersection of the two
rays. The quiescent ambient fluid was linearly stratified and the field of view initially
blue in colour (from the video images). When the paddle started moving, the energy of
the two rays propagated downward and intersected for the first time at 1.3T, where T
was the wave period. Within the intersection, the wave-induced density gradient
fluctuations revealed by the schlieren colour scheme grew and eventually developed a
regular pattern propagating vertically upwards (e.g. figure 3(a) taken at 4.4T ). The
density gradient fluctuations in figure 4(a) are symmetric about the horizontal and the
vertical axes. As the rays continued to interact, symmetrical forcing about the vertical
axis maintained the symmetry about the vertical axis (e.g. figure 3(b) taken at 11.3T ) ;
however, the local production of smaller-scale flow features created asymmetry about
the horizontal axis. The smaller-scale flow features were only observed in the upper half
of figure 3(b), suggesting a fraction of the wave energy must have been trapped in this
region.

Figure 3(c) (taken at 14.9T ) shows the appearance of a turbulent patch consisting
of small-scale filaments along the horizontal axis near the centre of the image. A black
coloured region was observed to surround this patch, indicating a strong density
gradient boundary. Note that the portion of the flow field which is black occupied a
larger area in the upper half of the figure as compared to the lower half of the figure.
This indicates that the wave-induced density gradient fluctuations were, on average,
larger in magnitude in the upper half of the figure and again suggesting that wave
energy had somehow been trapped in the upper half of the image. Later at 15.4T (figure
3d ), the density field retained its symmetry about the vertical axis and the wave crests
continued to propagate vertically upwards. The turbulent patch at the centre of image
was strained by the wave motions, going through a cycle of horizontal compression
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(a) (b)

(c) (d )

(e)

F 3. Time sequence of rainbow colour schlieren pictures from the experiment with the ambient
buoyancy frequency N

!
¯ 1.04 rad s−" and the wave frequency f¯ 0.53 rad s−", making f}N

!
¯ 0.49.

Based on these parameters and the horizontal width of the paddles in motion, the height of
intersection was 161 mm, and the width was 286 mm. The field of view had a vertical dimension of
154 mm and diameter 300 mm. The two paddles were above the photographs. The photos were taken
from the video images at (a) 4.4T, (b) 11.3T, (c) 14.9T, and (d ) 15.4T ; (e) was taken at 4T after the
paddles stopped.

with vertical extension and then vice versa, although the centroid of the patch remained
fixed in space. Once the forcing stopped, the turbulent patch collapsed, intruding
horizontally into the surrounding fluid and eventually relaminarized (figure 3e).

3.2. Shadowgraph pictures

While the shadowgraph method has a reduced sensitivity compared to the schlieren
method, the considerably larger field of view assisted in the interpretation of the
wave interactions. Figure 4(a) shows a shadowgraph picture taken from the video
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(a)

(b)

(c)

(d )

F 4. Time sequence of shadowgraph pictures from the experiment with the ambient buoyancy
frequency N¯ 1.27 rad s−" and the wave frequency f¯ 0.65 rad s−", making f}N

!
¯ 0.51. Based on

these parameters and the horizontal width of the paddles in motions, the height of the intersection
was 170 mm, and the width was 286 mm. The field of view was 300 mm in diameter. The grid lines
were 20 mm apart. The top grid lines on the photos were 60 mm below the two paddles. The edge of
the left-hand paddle was 20 mm from the left-hand edge of the circular view, and the edge of the right-
hand paddle was 40 mm from the right-hand edge. The centreline between the two paddles was
140 mm from the left-hand edge of the circular view. The photos were taken from the video images
at (a) 10.2T, (b) 11.0T, (c) 11.8T, and (d ) 13.2T.
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F 5. Vertical profiles of (a) density and (b) density gradient taken along the centreline between
the two paddles at 10.2T. The dashed line in (a) is the ambient density and the dash line in (b) is the
ambient density gradient. Negative density gradient is stable.
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images at 10.2T. Within the intersection region between the two rays and near the
centre of the image there was a horizontally elongated area of sharp transition from
black to white. Vertical profiles of density and density gradient (§4) taken along the
centreline of the intersection region are plotted in figure 5 and the sharp transition area
in figure 4(a) was enclosed between the two horizontal lines in figure 4. These two
figures demonstrate that the black area in figure 4(a) corresponded to a region where
the density gradient had been increased by wave straining. Light that had originally
fallen onto this area in a quiescent fluid was deflected downwards and concentrated
onto the horizontal white line below the black area, forming the sharp transition from
black to white and the wave crest was inside the black area.

Two rays (indicated by grey colour stripes) coming into the intersection region are
seen on the upper half of figure 4(b) (taken at 11.0T ). Although the same stripes were
also anticipated for the outgoing rays, ~#ρ fluctuations in the rays were weak, causing
ambiguity in the image. The weaker ~#ρ fluctuations (to which the shadowgraph is
sensitive) in the outgoing rays were the result of some wave energy being trapped inside
the intersection region.

Later at 11.8T (figure 4c), a new mode (indicated by the diamond-shaped grey
region) appeared near the centre of the image at a depth of 180 mm. From the video
images, this mode was produced locally and was stationary and below the new mode
there was a wave crest that was propagating upwards. This propagating wave and the
new stationary mode eventually met and interacted to induce higher ~#ρ fluctuations,
indicated by the area of sharp transition from black to white with sharper contrast, in
figure 4(d ).

The sequence continues in figure 6 where at 13.4T a Y-shaped white patch had
formed (e.g. figures 6(a) and 6(b) taken at 13.5T and 13.7T, respectively). At the top of
the Y-shaped patch, the density field had overturned (§4) ; as a result, ~#ρ fluctuations
were large in magnitude and varied widely, leading to the downwards deflection of the
incident light beam and the formation of the vertical white line of the Y-shape. Before
the disappearance of this patch, the next wave crest with large ~#ρ fluctuations
appeared below the patch (figure 6(c) taken at 13.9T ). Once the first Y-shaped patch
disappeared, the second was generated (e.g. figure 6(d ) taken at 14.3T ). A similar cycle
repeated, but the local ~#ρ fluctuations were even larger (indicated by sharper contrast)
(e.g. figure 6d–f ). Figure 6(g–i) illustrates the evolution of the third Y-shaped patch
which eventually degenerated into a more complex structure than on the previous
cycle. Localized thin elongated filaments were formed, resembling fine structure within
the ‘hard-line traumata’ described by McEwan (1973).

The turbulent fluctuations after overturning are not obvious in figure 6. This was
partly due to the finite dimension of the light source used in the set-up for the
shadowgraph method (Merzkirch 1974). Moreover, the presence of intense white light
within the Y-shaped patch, the lack of image sharpness and contrast, together with the
integral effects of the shadowgraph all contributed to the reduction in the sensitivity of
the shadowgraph pictures compared to the schlieren images in figure 4.

Results from figures 3, 4 and 6 appear to contradict the theoretical prediction of
Phillips (1968) that two internal waves of the same frequency pass through each other
unaffected. Phillips’ (1968) findings, however, were based on a two-scale perturbation
analysis and are only valid for weakly nonlinear interactions. In contrast, the results
shown in figures 3, 4 and 6 involved strong nonlinear non-resonant interactions (§4 and
see also Javam et al. 1997a, b). This was demonstrated in preliminary experiments
using two wave-paddles similar to those discussed in §2, but with the central
amplitudes of only 10 mm and a wavelength of 88 mm. These experiments showed only
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(a) (c)

(b) (d )

(e) (g)

( f ) (h)

(i )

F 6. Same as figure 4, but the photos were taken from the video images at (a) 13.5T, (b) 13.7T,
(c) 13.9T, (d ) 14.3T, (e) 14.5T, ( f ) 14.7T, (g) 15.1T, (h) 15.3T, and (i ) 15.5T.
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F 7. Vertical profiles of (a) density and (b) density gradient taken between 3T and 4.6T at
(0.12³0.03)T apart from the series of repeated experiments with the ambient buoyancy frequency
N
!
¯ 1.05 rad s−", the wave frequency f¯ 0.385 rad s−", making f}N

!
¯ 0.37. The leftmost profile was

taken through a quiescent ambient water. The scales on the horizontal axis were correct for the
leftmost profile ; subsequently, profiles were offset by constants proportional to the time interval
apart, respectively (except the first offset). Zero depth referred to the first sample. In (b), dashed lines
correspond to the zero gradient. The high-wavenumber fluctuations at the top of the gradient profiles
were induced by mechanical vibrations during the start-up of traverse motions. These vibrations
decayed before the sensors entering the intersection region as observed on the first profile. Estimating
from the profiles, the vertical wavelength was 73 mm, and the upwards vertical phase velocity was
5.5 mm s−".

regular patterns similar to figure 3(a) within the intersection but the pattern remained
unchanged with time. The video images of these runs indicated no sign of local
production of smaller-scale flow features, in agreement with the theory of Phillips
(1968). As figures 3–6 clearly show, there exists a threshold amplitude beyond which
strong nonlinear non-resonant interactions can occur.

4. Evolution of the density field

4.1. Vertical profiles

To complement the results of flow visualizations, density and density gradient profiles
were taken to examine the evolution of the density profiles towards gravitationally
unstable density structures. By repeating experiments with the same parameters but
profiling at different times, a series of vertical profiles was obtained along the centreline
of the intersection. Figure 7 shows the vertical profiles in the time interval from 3T to
4.6T. The resultant wave, isolated within the intersection region, was propagating
vertically upwards. Although the upper portion of the density gradient profiles after
4.4T was distorted, the density fluctuations were clearly dominated by a single mode
wave, as anticipated from visualization.

Figure 8 shows density profiles in the progression towards gravitationally unstable
overturning from 4.2T to 15.2T. These profiles were taken at approximately the same
phase (i.e. one wave period apart) from experiments with a higher wave frequency and
ambient buoyancy frequency than those in figure 7. The density profile taken at 8.3T
(the sixth profile) shows the presence of the primary resultant wave and the locally
produced new modes (see §4.2 below) which had shorter vertical wavelengths. As a
result, a double peak was formed in the density gradient profile at depth of 170 mm.
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F 8. Vertical profiles of (a) density and (b) density gradient taken between 4.2T and 15.2T at
(1.00³0.07)T apart from the series of repeated experiments with the ambient buoyancy frequency
N
!
¯ 1.26 rad s−", the wave frequency f¯ 0.65 rad s−", making f}N

!
¯ 0.51. The first profile was taken

through a quiescent ambient water. The scales on the horizontal axis were correct for the leftmost
profile ; subsequently, profiles were offset by constants proportional to the time interval apart,
respectively (except the first offset). Zero depth referred to the paddles’ level. In (b), dashed lines
correspond to the zero gradient.
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F 9. Vertical profiles of (a) density and (b) density gradient taken between 13.92T and 15.10T
at (0.08³0.01)T apart and between 15.10T and 17.45T at (0.17³0.01)T apart from the series of
repeated experiments with the ambient buoyancy frequency N

!
¯ 1.1 rad s−", the wave frequency

f¯ 0.53 rad s−", making f}N
!
¯ 0.48. The first profile was taken through a quiescent ambient water.

The scales on the horizontal axis were correct for the leftmost profile ; subsequently, profiles were
offset by constants proportional to the time interval apart, respectively (except the first offset). Zero
depth referred to the paddles’ level. In (b), dashed lines correspond to the zero gradient.

On the two succeeding profiles (taken at 9.2T and 10.2T ), the peak at a depth of
170 mm abruptly increased in magnitude as the primary resultant wave propagated
past the new mode.

A double peak in the gradient profile reappeared at 11.3T, but this time with larger
values than those observed earlier. At 12.2T, fluctuations with distinctly smaller
wavelengths appeared for the first time in two isolated regions in the neighbourhood
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of the peak density gradients. By this time, the peak density gradient at depth 170 mm
had intensified to 2.8 times the value at five wave periods earlier. A period later (at
13.2T ), the density field overturned at a depth immediately below the peak density
gradient. This peak density gradient was within the region of sharp transition from
black to white on figure 4(d ) (see also figure 6). The last profile taken at 15.2T
demonstrates that gravitationally unstable overturning eventually broke down to
produce small-scale turbulent fluctuations, although note that the density gradient
profile shows only a few zero-crossings.

These small-scale turbulent fluctuations after overturning were examined in more
detail by taking vertical density and density gradient profiles during 13.92T and 17.45T
at a shorter interval between profiles than used in figure 8. Figure 9(a) shows an
overturning at 14.17T (the fourth profile). It evolved into a large overturning by the
next profile taken at 14.26T. Small-scale turbulent fluctuations formed and persisted
thereafter as shown by the density gradient profiles in figure 9(b). From 14.34T to
14.85T, two regions of turbulent density gradient fluctuations were separated by a
segment of distinctly smooth density gradient. Initially, the positive rate of change of
vertical velocity with height, i.e. ¥w}¥z" 0 (the vertical dilation strain rate), induced
by the background internal wave (§5) expanded this separation. As the wave continued
to propagate through the small-scale fluctuations, the two regions of turbulent density
gradient fluctuations were, in turn, forced together by the negative ¥w}¥z (i.e. the
vertical compressive strain rate). A similar structure was also observed on the next
cycle between 16.27T and 16.61T. Turbulent density gradient fluctuations before
15.10T were visually more intense than those after this time. Throughout this sequence
of profiles, zero-crossings and unstable density gradients were rare.

4.2. Production of new modes

Time series of density fluctuations were collected within an incoming ray, an outgoing
ray, and within the intersection region to investigate the production of new modes by
nonlinear non-resonant interactions between the two rays. The evolution of the
frequency content for an incoming ray and an outgoing ray are shown separately on
figures 10 and 11. Note that as the amplitude of the central wave-blades was twice that
of the blades at the sides of the paddle, the wave amplitude varied across the beam. As
a consequence, the exact spectral levels are different between the two records shown in
figures 10 and 11, reflecting the exact locations of the sensors relative to the local centre
of the wave beam. Although small peaks at other frequencies were observed, clearly
both these spectra from the incoming and outgoing rays were dominated by energy at
the forcing frequency f¯ 0.1 Hz.

On the other hand, when the spectra were computed from the time series obtained
within the intersection region they showed substantial peaks at 2f (i.e. 1.02 N

!
) and 3f

(figure 12b–d ) (cf. Javam et al. 1997a, b). Indeed, figure 12(c) shows that the maximum
peak was at 2f. Since the wave energy inside the incoming rays was at the frequency
f, the 2f and 3f components must have been produced locally by sum interactions. Since
the new modes had frequencies greater than the ambient buoyancy frequency N

!
, they

were not governed by the dispersion relation (1) ; hence, the new modes were forced
oscillations sustained by the nonlinear terms in the equation of motion and do not
satisfy the nonlinear resonant conditions in equations (1) and (2). The implication is
that nonlinear non-resonant interactions were responsible for transferring the wave
energy from the forcing frequency to the new modes.

Figure 13 illustrates the frequency content for the time series collected at a distance
0.22 times the horizontal wavelength away from the centreline of the intersection and
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¯ 0.51. The dashed lines on the figure indicate the ambient buoyancy
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by the frequency f. Note the change in the vertical scale.

0

1

2

3(a)
×10–3

10–2 10–1 100

f Eqq

0

5

2

(b)
×10–2

10–2 10–1 100

0

1

2(c)

10–2 10–1 100

f Eqq

0

4

10

(d )

10–2 10–1 100

Frequency f (Hz) Frequency f (Hz)

6

2

F 11. Same as figure 10 but from the time series collected within the outgoing ray
at (80, 306).



104 S. G. Teoh, G. N. I�ey and J. Imberger

0

1

2

3(a)
×10–2

10–2 10–1 100

f Eqq

0

5

(b)
×10–1

10–2 10–1 100

0

5

10(c)

10–2 10–1 100

f Eqq

0

1

15

(d )

10–2 10–1 100

Frequency f (Hz) Frequency f (Hz)

2

10

F 12. Same as figure 10 but from the time series collected at the centreline
of the intersection at (0, 196).

0

1

2

3(a)
×10–2

10–2 10–1 100

f Eqq

0

5

(b)
×10–1

10–2 10–1 100

0

2

3(c)

10–2 10–1 100

f Eqq

0

2

(d )

10–2 10–1 100

Frequency f (Hz) Frequency f (Hz)

6

10

4

1

F 13. Same as figure 10 but from the time series collected away from the centreline of the
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near to the node of isopycnal displacements. Here, the amplitude for the wave induced
density fluctuations was smaller than those shown in figure 12. Note also that the
spectra show that the wave energy was only transferred to 2f, suggesting that viscous
dissipation had apparently prevented the production of higher-frequency components.

In summary, the new modes with frequencies greater than the ambient buoyancy
frequency in figures 12 and 13 are evanescent modes (e.g. LeBlond & Mysak 1978). Not
governed by the dispersion relation (1), these modes are forced oscillations which
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cannot propagate and therefore the energy transfer from f to the higher-frequency
evanescent modes provides a mechanism to accumulate energy locally, leading to
larger density fluctuations both above and below the local ambient density. Ultimately,
this energy is transferred to small-scale processes (figures 3c and 3d ) by gravitational
instability (§6).

5. Evolution of the velocity fields

The velocity fields obtained from the MCC technique between 3.41T and 4.45T are
shown in figure 14. Only the incoming and the outgoing rays to the right of the vertical
centreline of the intersection region were measured, although the rays to the left of the
centreline would be the mirror image of figure 14. Within the intersection (panel (iii)),
velocity fields formed a cellular pattern, exhibiting two distinct stagnation points along
the vertical centreline of intersection: one exhibited a horizontal compressive straining
(i.e. locally ¥u}¥x! 0), while the second exhibited a horizontal dilation straining (i.e.
locally ¥u}¥x" 0). With time, the stagnation points travelled vertically upwards, as
seen in the sequence from figures 14(a)–14(d ).

Figure 15 show the evolution of the velocity fields and Richardson numbers within
the intersection between 6.2T and 14.3T. The velocity fields were measured at about the
same phase of the wave cycle. The vertical solid line in the velocity field was the path
for the vertical density profiles shown earlier in figure 8. Also shown in panel (i) are the
contours for 1}Ri

!
where Ri

!
¯ [N

!
}(¥u}¥z)]# is the Richardson number based on the

ambient stratification; whereas in panel (iii), the Richardson number was defined
as Ri¯ [N}(¥u}¥z)]# where the local N #¯®(g}ρ

!
) ¥ρ}¥z. At those locations

where vertical velocities were nearly zero, the wave-induced density fluctuations
ρh (x, z, t)E 0, although the isopycnal displacements were largest near the vertical solid
line on panel (i). The ‘true’ instantaneous local Richardson number for the flow field
would fall somewhere in between Ri and Ri

!
.

The contour for 1}Ri
!
in panel (i) in figure 15 suggests that Ri

!
was larger than 0.25

everywhere in the flow before overturning. In addition, vertical profiles for 1}Ri were
consistently below 4 and became negative when the density field overturned (figure
15e, f ). Thus, the Richardson number derived from the velocity fields was consistently
outside the range between zero and 0.25. Note also that the density overturning was
above the stagnation point exhibiting ¥u}¥x! 0 (figure 15e) and below the position of
maximum velocity and maximum ρh . As the vertical shear in the velocity field in the
region surrounding the overturning was small before the density was overturned, it is
clear that the vertical shear could not have initiated the overturning. Rather, the
overturning is best described as a gravitational instability.

The velocity fields shown in figure 15(b–d ) were clearly distorted by the presence of
the evanescent modes, although the pattern of stagnation-point flow remained. The
distance between stagnation points was approximately the same, however, and the
wavelength of the primary resultant wave remained unchanged. Unlike figure 15(a ii),
figure 15(d ii) shows that the maximum ρh was just below the maximum velocity,
suggesting the isopycnal displacements had grown.

As discussed in §4.2, a fraction of the wave energy was trapped within the
intersection when it was transferred to the evanescent modes by nonlinear non-
resonant interactions. The vertical wavelength of the primary resultant wave remained
unchanged and the local isopycnal displacements grew (cf. Javam et al. 1997a, b).
Thus, at some point in time, the variations with depth in ¥u}¥x would force the
isopycnals to overturn above the stagnation point to accommodate their large
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F 14. Velocity images within (i) the incoming ray, (ii) the outgoing ray, and (iii) the intersection.
Images were taken at (a) 3.41T, (b) 3.62T, (c) 3.93T, and (d ) 4.14T from the series of experiments with
the ambient buoyancy frequency N

!
¯ 1.26 rad s−" and the wave frequency f¯ 0.65 rad s−", making

f}N
!
¯ 0.51. The velocity scales were plotted in the blank areas, where a clock was displayed during
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the acquisition. Within velocity images, there were points without velocity vectors. These were caused
by bad vectors identified during image post-processing using the multiple-passed method described
by Stevens & Coates (1994). For clarity, these two-dimensional velocity fields only display velocities
at interval of 20¬20 pixels (3.9 mm horizontally¬3.8 mm vertically).
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displacements. Once the isopycnals had overturned, wave energy could be transferred
to the gravitationally unstable overturning which, in turn, generated turbulence.

6. Evolution of turbulence

6.1. Distribution of g« and L
c

Figures 16 and 17 illustrate a series of vertical profiles of the buoyancy anomaly g«
and the centred displacement scale L

c
. They (and the subsequent figures) were derived

from the density profiles in figure 9 taken during 14.1T and 17.45T using the method
described in Imberger & Boashash (1986), Luketina (1987) and Luketina & Imberger
(1989). The buoyancy anomaly g« was defined as g«¯ g( ρ®ρ

m
)}ρ

!
where ρ, ρ

m
and ρ

!
were the local density, the density from the monotonized profile and the average
density, respectively. The centred displacement scale L

c
and the Thorpe displacement

L
d

(Thorpe 1977; Dillon 1982) were of the same order ; they described the overturn
scales registered in an instantaneous density profile. In the derivation of g« and L

c
, the

minimum density difference in re-ordering the density profile was 0.0159 kg m−$ while
the resolution of density measurement was 0.0055 kg m−$. Profiles in figure 16
suggested that the largest g« occurred during 14.26T to 14.51T and the subsequent g«
was smaller. Figure 17 illustrates that large L

c
occurred in phase with large g«.

The distributions of g« and L
c

within the turbulent patch in each instantaneous
vertical profile can be described by their standard deviation σ and skewness S. The
skewness for the distribution of a variable ξ is defined as (e.g. Tennekes & Lumley
1972)

S3
(ξ®ξa)$

σ$

, (3)

where ξa is the mean value for the variable ξ. The turbulent patch in each instantaneous
vertical profile was defined here as the segment between the first and the last non-
zero g«.

Figures 18(a) and 19(a) illustrate the temporal evolution of the maximum, mean and
median values of g« and L

c
derived from the instantaneous vertical profiles while figures

18(b, c) and 19(b, c) show the normalized standard deviation σ
n

and the skewness S.
The figures show that the distribution of g« and L

c
were highly skewed towards values

below their mean which, in turn, were small.
The timescale for an unstable overturn to collapse under buoyancy to its equilibrium

level is of the order of (gW «}Lq
c
)−"/#, where gW « is the instantaneous r.m.s. value of g« and

Lq
c
is the instantaneous r.m.s. value of L

c
within the turbulent patch (Imberger 1994).

On the other hand, the timescale for a vertically displaced fluid element to oscillate

F 15. (i) Velocity images and 1}Ri
!

contours at (a) 6.2T, (b) 8.3T, (c) 10.2T, (d ) 12.2T,
(e) 13.2T, and ( f ) 14.3T from the experiment with the ambient buoyancy frequency N

!
¯ 1.26 rad s−"

and the wave frequency f¯ 0.65 rad s−", making f}N
!
¯ 0.51. Contour levels were 0.05, 0.15, 0.25,

0.35, 0.45, 0.55 and 0.65. (ii) Horizontal velocity (mm s−") (D) and vertical velocity (mm s−") ()
profiles extracted from velocity image together with the density fluctuations (kg m−$) (dotted line) and
density gradient (kg m−$ per cm) (solid line). The velocity scales on panel (i) were plotted in the blank
area at the bottom right-hand corner. For clarify, these two-dimensional velocity fields only display
velocities at interval of 40¬40 pixels (7.8 mm horizontally¬7.6 mm vertically), although velocities
were computed for 10¬10 pixels (1.95 mm horizontally¬1.91 mm vertically). Nonetheless, the
velocity profiles on panel (ii) display all velocities calculated, except those deemed to be bad vectors.
The solid vertical lines in velocity images show the path of corresponding vertical density profiles,
which were also in the plane of illumination. (iii) Vertical profile of 1}Ri.
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F 16. Vertical profiles of density anomaly g« taken (a) during 14.17T to 15.10T, (b) during
15.27T to 16.10T, (c) during 16.27T to 17.11T, and (d ) during 17.28T to 17.45T. Profiles in (a) were
at (0.08³0.01)T interval apart and profiles in (b), (c) and (d ) were at (0.17³0.01)T interval apart.
Profiles were offset by constants proportional to time interval apart.

about its initial equilibrium level under gravitational adjustment is of order of N−"
!

(e.g.
Turner 1973). Thus, the ratio (gW «}N#

!
Lq

c
) can be interpreted as the square of the ratio

of the gravitational adjustment time to the collapse timescale of the overturning. If
(gW «}N#

!
Lq

c
)! ( f #}N#

!
), then the collapse of the overturning is disrupted by the wave

motions, which have frequency f or higher. Figure 20 shows that (gW «}N#

!
Lq

c
) was always

less than one. The time average of (gW «}N#

!
Lq

c
) was in fact 0.17, smaller than the square

of the ratio of forcing frequency to buoyancy frequency ( f #}N#

!
)¯ 0.23. As a result, the

release of available potential energy (APE) locked inside the overturning was strongly
affected by the wave motion.
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F 17. Vertical profiles of centred displacement scale L
c
taken (a) during 14.17T to 15.10T, (b)

during 15.27T to 16.10T, (c) during 16.27T to 17.11T, and (d ) during 17.28T to 17.45T. Profiles in
(a) were at (0.08³0.01) T interval apart and profiles in (b), (c) and (d ) were at (0.17³0.01) T interval
apart. Profiles were offset by constants proportional to time interval apart.

6.2. Energetics

Following II and Imberger (1994), the turbulent Froude number Fr
t
, the turbulent

Reynolds number Re
t
and the turbulent Grashof number Gr

t
are defined as

Fr
t
¯ 0 ε

gW « $/#Lq "/#
c

1"/$¯ 0LR

Lq
c

1#/$, (4)

Re
t
¯ 0εLq %cν$ 1

"/$

¯ 0Lq cL
k

1%/$, (5)

Gr
t
¯ 0gW «Lq $cν# 1 , (6)
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F 18. (a) The temporal evolutions of the maximum (solid line), mean () and median (¬) of
absolute density anomaly g« (m s−#). (b) The temporal evolutions of the standard deviation σ of the
distribution of absolute density anomaly g« normalized by the instantaneous mean. (c) The temporal
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centred displacement scale L

c
(m). (b) The temporal evolutions of the standard deviation σ of the

distribution of centred displacement scale L
c
normalized by the instantaneous mean. (c) The temporal

evolutions of the skewness S of the same distribution.

where L
R

¯ (ε#/$Lq
c
}gW «)$/%. If (gW «}N#

!
Lq

c
)¯ 1, L

R
becomes equal to the Ozimdov scale

L
O
.
The instantaneous TKE dissipation rate ε for a turbulent patch was obtained by

curve-fitting the theoretical Batchelor spectrum for the temperature gradient (Batchelor
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f is the wave forcing frequency. The dashed line is (gW «}N#

!
Lq

c
)¯ 0.17 which is the mean of all

(gW «}N#

!
Lq

c
). Phase zero refers to the time of overturning at 14.17T.

102

101

100

10–1

10–2

10–3

10–4

10–1 100 101

Wave number (c.p.m.)×2 π Lk

U
 (

k)
 (

(°
C

 m
–2

)/
c.

p.
m

.)

F 21. ——, A typical measured temperature gradient spectrum taken at 16.27T and [[[, the
theoretical Batchelor spectrum. Wavenumber on the horizontal axis is normalized by the Kolmogorov
scale.

1959) to the spectra from temperature measurements as described in detail by Luketina
(1987) (see also Dillon & Caldwell 1980; Fozdar et al. 1985; Imberger & Boashash
1986; Luketina & Imberger (1980). Etemad-Shahidi & Imberger (1996) have shown
from field data that the validity of this method is not limited to high Re

t
. A comparison

of dissipation calculations from this method with those from velocity microstructure
were closely correlated for rates of dissipation in the range 10−)–10−& m# s−$ (see also
Oakey 1982). In the present experiment, the patches having ε outside this range were
excluded in figures 22, 24, 25 and 26. A typical temperature gradient spectrum
calculated from instantaneous temperature gradient between depths 101 mm and
228 mm (total of 128 samples) is shown in figure 21. The nonlinear curve fitting of the
data to the Batchelor spectrum (Luketina 1987) began from the high-wavenumber
region and any contamination of the low-wavenumber portion by wave motion had
minimal influence on the dissipation estimation.

The variation of the instantaneous TKE dissipation rate ε, normalized by νN#

!
, is

shown in figure 22. The figure shows that (ε}νN#

!
) was always less than one and the time

average of (ε}νN#

!
) was 0.34. Given that ( f #}N#

!
)¯ 0.23, the Kolmogorov timescale

t
k
¯ (ν}ε)"/# rad s−" was O( f −") and larger than N−"

!
, meaning even the dissipative
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F 24. Temporal evolution of Fr
t
. The solid line is Fr

t
¯ 1. The dashed line is Fr

t
¯ 1.2

which is the mean of all Fr
t
. Phase zero refers to the time of overturning at 14.17T.

scales were directly influenced by the wave motion and the ambient stratification.
Figures 23–25 show the temporal evolution of Gr

t
, Fr

t
and Re

t
computed as in

equations (4)–(6). The range for Gr
t

was from 8¬10−$ to 1.2¬10%, for Fr
t

from
0.2 to 2.4, and for Re

t
from 0.2 to 33. Gr

t
and Re

t
oscillated weakly with the phase

of the wave cycle, although Fr
t
appeared uncorrelated with the phase. The mean Gr

t

was 1.4¬10$, Fr
t
was 1.2, and Re

t
was 7. The locations of the turbulent patches on the

Fr
t
–Re

t
diagram are illustrated on figure 26; the boundaries for Fr

t
¯ 1, Re

t
¯ 15 and

Frγ ¯Fr
t
Re"/#

t
¯ 3.9 described by II are shown by solid lines. The location of tur-

bulent patches was scattered within a region on the left of these boundaries and next
to Frγ ¯Fr

t
Re"/#

t
C 1 (dashed line).

The large value of the mean Gr
t

estimate above, in combination with previous
visualizations and results from the MCC technique, are all consistent with the view that
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diagram. In the figure, the vertical solid line is Re

t
¯ 15, the horizontal solid
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t
Re"/#

t
¯ 3.9, an the inclined dashed line is Frγ ¯ 1.

the overturning was gravitationally unstable. The overturning would release its
potential energy to energize small-scale processes, although the release of APE was
disrupted by the wave motions. Since the mean turbulent Froude number Fr

t
was O(1),

the maximum rate of release of APE was, on average, comparable to the TKE
dissipation rate (cf. Taylor 1992).

7. Discussion

The preceding results (and the numerical results reported by Javam et al. 1997b)
have confirmed that two downward propagating rays, with sufficiently large
amplitudes, can interact non-resonantly and transfer some energy nonlinearly from the
forcing mode to evanescent modes. The transfer of energy towards higher frequencies
can also occur in nonlinear interactions between an incident and a reflected internal
wave from a sloping boundary (Thorpe 1987a) or in the interactions near a turning
point of a ray propagating against a steady shear (Javam et al. 1997a). In contrast,
wave energy is transferred towards lower frequencies in the triad resonant interactions
observed by Martin et al. (1969, 1972), in the parametric subharmonic instability
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observed by McEwan & Robinson (1975) and Thorpe (1994c), and near a turning
point of a ray propagating in an environment which has spatially varying buoyancy
frequency (Javam et al. 1997a).

Since the evanescent modes cannot propagate, wave energy that has been transferred
to these modes was trapped within the intersection, leading to larger localized
isopycnal displacements ; the vertical wavelength of the primary resultant wave,
however, remained the same. Therefore, at some point, the isopycnals are forced to
overturn above the stagnation point by the variations in depth in ¥u}¥x (i.e. the rate
of change of horizontal velocity with horizontal distance). The increase in isopycnal
displacements and the overturning of the isopycnals can also clearly be seen in the
numerical simulations by Javam et al. (1997b). The increase in isopycnal slope was
theoretically predicted by McEwan (1973) and, as in this earlier study, the Richardson
number is larger than 0.25 preceding the overturning, although the properties of the
two rays in McEwan’s (1973) experiments are different. While Richardson numbers are
large, the turbulent Grashof number for the overturning is large, and all these
observations thus indicate the overturning is gravitationally unstable.

The mechanism leading to the overturning described above is different from that
discussed by Delisi & Orlanski (1975) and Thorpe (1994a, b). Delisi & Orlanski (1975)
investigated the overturning of isopycnals as an incident ray is reflected at a horizontal
density jump. When the horizontal advection of density is larger than the horizontal
phase velocity, the isopycnals near the density jump overturn (see also Orlanski &
Bryan 1969; Javam et al. 1997a). Thorpe (1994a, b) discussed the generation of the
unstable density structure in a ray. When the ray is forced at large amplitude, the heavy
fluid slides above the light fluid along the ray; hence, an unstable density field is
produced. In this case, the amplitude is not constrained by the wavelength of the ray,
but ultimately by the unstable buoyancy field that forces the density structure to
collapse.

The displacement scales registered in an instantaneous density profile are the
consequences of overturning of isopycnals. Itsweire & Helland (1989) have concluded
that, in actively mixing turbulence (cf. Gibson 1986) in salt stratified water, the
smallest scale of motions contributing to buoyancy flux is of the order of 3L

k
, while

motions at scales of the order of 18.5L
k

contribute the most to buoyancy flux.
Therefore, the skewness of the distribution of the overturning scales must somehow
reflect on the dynamics of small-scale mixing. Here the distribution of L

c
has a small

bandwidth and is skewed towards L
k
throughout the wave cycle. Further, the mean Re

t

of 7 suggests that, on average, L
c
E 4.3L

k
. Thus, the range of scales supporting

buoyancy flux is narrow and the mixing efficiency would be negligibly small.
Preliminary analysis of data collected from lakes also indicates high skewness events
have low mixing efficiency, and the relation between the skewness and mixing efficiency
is currently under investigation. Note that the skewness should also reflect the
turbulence generating mechanism as the larger displacement scales, which depend on
the mechanism, are influencing the value of skewness.

Employing the laboratory results from Stillinger et al. 1983), Itsweire, Helland &
Van Atta (1986), Lienhard & Van Atta (1990), Rohr et al. (1988) and Ivey & Nokes
(1989), II proposed the following: when Fr

t
¯ (L

!
}Lq

c
)#/$¯O(1), the turbulent motions

would induce a net buoyancy flux when the square of the strain Froude number
(ε}νN#

!
)¯ (L

!
}L

k
)%/$ is above a critical value (see also Gibson 1986). Although the

critical value remains unclear (e.g. Huq & Stretch 1995), II recommended that it is
about 15. At this critical ε}νN#

!
, L

!
is about 7.6L

k
or O(10L

k
) where the TKE spectrum

starts rolling off (e.g. Tennekes & Lumley 1972). The results in §6.2 show that the mean



118 S. G. Teoh, G. N. I�ey and J. Imberger

turbulent Froude number is O(1) and ε}νN#

!
! 1. Thus, the previous results would

again imply the turbulent motions had created negligible buoyancy flux. However, the
motions are dissipative as indicated by the observation that the spectra for the
temperature gradient are consistent with the Batchelor spectrum.

The Ozmidov scale L
O

is often regarded as the energy-containing scales (e.g. Gargett
et al. 1984; Gargett 1988; Gibson 1991). By definition, the buoyancy force is balanced
by the inertial forces (as defined by ε) at the Ozmidov scale (e.g. Itsweire et al. 1986;
Imberger 1994). This interpretation has assumed (or implied) the turbulent velocity
scale u¯ (εL

!
)"/$ which is valid only for Fr

t
¯ (ε}N$

!
Lq #

c
)"/$! 1 and (ε}νN#

!
)" 10 (cf.

Ivey et al. 1996) ; the latter constraint simply implies that the energy-containing scales
need to be about six times larger than the Kolmogorov scales. Further, the results
described in §6.2 show that (ε}νN#

!
) can be less than one, meaning L

O
is less than L

k
.

As the Kolmogorov scale L
k

is of the order of the smallest scale at which turbulent
velocity fluctuations existed (e.g. Tennekes & Lumley 1972), the Ozmidov scale has no
physical interpretation in terms of the velocity spectrum when (ε}νN#

!
)! 1.

Sometimes, the energy-containing scales are assumed to be comparable to the
overturning scales obtained from density measurements when the latter are smaller
than L

O
(e.g. Gregg 1987; Luketina & Imberger 1989; Taylor 1992). However, the

results demonstrate that the Re
t
can be less than one, meaning Lq

c
is smaller than L

k
.

Hence, Lq
c
deviates from the energy-containing scales as Re

t
U 1, eventually resulting in

Re
t
! 1. The correlation between turbulent density fluctuations and the vertical

turbulent velocity fluctuations (i.e. buoyancy flux) should thus be very low as Re
t
U 1.

The question of whether the mechanism observed in the present experiment is
generating some turbulent patches in a thermocline below the surface mixing layer (e.g.
Imberger 1985) or elsewhere in the interior of a stratified lake or ocean remains unclear,
although internal wave rays are ubiquitous inside these water bodies. On the other
hand, Yamazaki (1990) has confirmed that the dynamics of turbulence in the
laboratory experiments by Itsweire et al. (1986) are identical to that in the thermocline
when (ε}νN#

!
)! 100; thus, the critical dissipation rate (ε}νN#

!
)E 15 from the laboratory

experiments should be applicable to the thermocline. Further, when the internal wave
spectrum in the thermocline is close to the Garrett & Munk spectrum (Garrett & Munk
1975), Wesson & Gregg (1994) estimated that (ε}νN#

!
)¯ 13. Indeed, turbulent events

with O(1)! (ε}νN#

!
)! 20 are not uncommon in the ocean thermocline (e.g. Peters &

Gregg 1988; Gregg 1989; Yamazaki 1990) and, as in the present study, they cannot
sustain a net buoyancy flux.

In lakes, preliminary results have shown that many turbulent patches inside the
thermocline have the characteristics of those observed in the experiments : they have
high skewness S, Re

t
! 1 and (ε}νM #)! 1, where M is the buoyancy frequency

computed from the monotonized density profile. The implication is that while these
events probably generate a very small buoyancy flux, they must play an important role
in dissipating TKE in the interior and hence in the hydrodynamics of a lake.

8. Conclusion

The consequences of nonlinear non-resonant interactions between the two
downward propagating internal wave rays were investigated. The results indicated that
some wave energy was accumulated inside the interaction region owing to the
production of evanescent modes. As a result, the local isopycnal displacements were
increased, but the vertical wavelength of the primary resultant wave remained
unchanged. Eventually, the isopycnals overturned, releasing available potential energy
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and generating turbulence. Inside the turbulent patch, the distribution of the centred
displacement scales was highly skewed towards the Kolmogorov scale, the turbulent
Reynolds number Re

t
was low, and the square of the strain Froude number (ε}νN#

!
)

was less than one. This suggests that almost all turbulent kinetic energy was locally
dissipated and a negligible amount of mixing resulted.
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